Перспективные технологии и материалы
Электронный научный журнал

Физико-математические науки
Получение суспензий низкоразмерных порошков угля с помощью метода гидроударного фракционирования
Жогаштиев Н.Т., Абдалиев У.К., Ташполотов Ы. 1

1. Ошский государственный университет, Институт природных ресурсов ЮО НАН КР, Ошский государственный социальный университет

Резюме:

В последние годы исследование процессов образования высокодисперсных (нано-, ультра- и микроразмерных) порошков проводится интенсивно и это одно из наиболее динамично развивающихся областей науки, и здесь происходит, огромное накопление теоретического, методического, экспериментального и технологического материала. Использование нанопорошков в качестве добавок к различным материалам с получением наноструктурных композитов резко улучшает механические, электрофизические, химические и другие свойства. Известно также, что методы регулирования свойств материалов на наометрическом уровне позволило открыть новые уникальные функциональные их свойства. Это, в свою очередь, привело к созданию новых продуктов и технологий, основанных на наноструктурном управлении материалами. Производство наночастиц различных элементов обычно проводят двумя путями: при помощи распыления(сверху-вниз) и процессе самосборки(снизу-вверх). В первом подходе наночастицы получаются при уменьшении размеров сыпучих минерально-сырьевых ресурсов (материалов). Для их производства используются физические, физико-химические, электрические или термические процессы. Эти методы включают энергетическое измельчение, механико-химическую обработку, электрохимическое осаждение, лазерную абляцию, напыление паровую конденсацию и др. При использовании второго подхода наночастицы получают на атомарном (молекулярном) уровне и обрабатывают их преимущественно химическим способом. Каждый из этих подходов может быть реализован в любом из трех состояний вещества: твердое, жидкое и газообразное (а также при комбинации состояний). Наночастицы имеют размеры от атомарного (молекулярного) до 100нм, тем самым образуя «мост» между квантовым и макроскопическим миром (микро и макро). Исследования высокодисперсных систем, проведенные учеными различных стран, позволили выделить из них коллоидные (ультрадисперсные) микрогетерогенные системы с размерами частиц в диапазоне 1,0 - 100 нм, характеризующиеся различием в физико-химических свойствах при одинаковом химическом составе. Вещество в коллоидном состоянии диспергировано до 1,0-100 нм, но превышающими по размерам отдельные молекулы. Поэтому многие физико-химические свойства наноразмерных частиц значительно отличаются от таких же свойств того же вещества в виде более крупных (микро- и макроскопических) объектов. К числу этих свойств относятся: механические, теплофизические, электрические, магнитные оптические и химические характеристики. Подобные различия в настоящее время называются наноразмерными эффектами. Кроме того, если размеры наночастиц, хотя бы в одном измерении меньше критических длин, характеризующих многие физические явления, то у них появляются новые уникальные физические и химические свойства квантовомеханической природы. Из литературных данных известно, что наличие в жидкости твердых частиц (низкоразмерных) определенного состава, числа, концентрации, формы, размера и других физико-химических, технологических параметров способно существенным образом изменять с одной стороны исходные свойства самой жидкости и с другой свойства наполнителя. В этом смысле суспензия представляет жидко-нанотвердофазную квазиравновесную систему, имеющую все признаки классического композиционного материала. Исходя из этого, суспензию можно условно классифицировать как специфический жидкофазный композиционный материал, обладающий широкими функционально-технологическими возможностями и физико-химическими и потребительскими свойствами. В известных способах процесс приготовления различных суспензий, состоящих из механической смеси жидкой фазы (наполнителя), разделен по времени. При этом фракционирование и диспергирование твердого продукта осуществляется механически, а затем происходит его смешивание с жидкой матрицей. При этом процесс смешивания может сочетаться с измельчением наполнителя, сепарацией и другими процессами. Такая последовательность действий снижает эффективность активации жидкофазной матрицы частицами твердого наполнителя. В наших экспериментах получения микро- и наносуспензий, совмещался процессом фракционирования угольных частиц с дальнейшим процессом образования жидко-нанотвердофазной суспензии. Суть нашей методологии состоит в том, что струя ультрадисперсных угольных частиц направлялся на преграду, с которой после динамического взаимодействия с поверхностью стеклянной емкости происходит микроразрушение с отделением от поверхности микро- и наночастицы угля (макро частицы угля оседают на дно емкости). Отделившиеся относительно мелкие угольные частицы далее смешиваются с воздухом и переходят во вторую емкость, где взаимодействуют также с ее поверхностью. Во второй емкости происходят такие же процессы как и в первом, т.е. относительно крупные частицы угля оседают на дно емкости, а высокодисперсные смешивается с воздухом и попадает в третью емкость и т.д. После многократного фракционирования угольных частиц высокодисперсные попадают в емкость с жидкостью и смешиваются с ней. В емкости с жидкостью оседание высокодисперсных частиц угля не происходит из-за их низкоразмерности. Наши исследования показали, что размер угольных частиц, многократно отделившихся от поверхности материала емкости, имеет микро- и наноразмеры, причем наночастицы угля полностью растворяются в рабочей жидкости. Такая гидроударная технология многократного фракционирования является новым способом активации жидкостей и получения высокодисперсных частиц угля и жидко-нанотвердофазной суспензии. Основными факторами, приводящими к активации и лежащими в основе технологии получения жидко-нанотвердофазной суспензии данным методом, являются: многократный гидроудар частицы угля о преграду емкости и их диспергирование, а также фракционирование угольных частиц.. Управление функциональной активностью различных жидкостей может осуществляться варьированием давления потока с частицами, размера емкости для фракционирования, количества каскада фракционирования, диаметра сопла для микрогетерогенной фазы и других технологических параметров всего процесса. Таким образом, гидроударная, многокаскадная фракционная технология позволяет обеспечить совмещение процессов образования высокодисперсной твердой фазы и суспензии в целом, повысить функциональную активность последней.

Ключевые слова: нанопорошки угля, гидроударное фракционирование, нанотехнология


Библиографическая ссылка

Жогаштиев Н.Т., Абдалиев У.К., Ташполотов Ы. 1 Получение суспензий низкоразмерных порошков угля с помощью метода гидроударного фракционирования // Перспективные технологии и материалы. – 2012. – № 1;
URL: www.es.rae.ru/islamidin/185-1002 (дата обращения: 23.11.2024).


Код для вставки на сайт или в блог

Просмотры статьи

Сегодня: 387 | За неделю: 387 | Всего: 387


Комментарии (0)


Сайт работает на RAE Editorial System